博客
关于我
Tensorflow 2.0
阅读量:752 次
发布时间:2019-03-23

本文共 416 字,大约阅读时间需要 1 分钟。

SavedModel与Checkpoints的区别

SavedModel是一种包含完整TensorFlow程序的模型文件,包含了权重和计算逻辑。这种模型无需依赖原始的模型代码即可运行,极大地方便了模型的分享和部署过程。此外,SavedModel可以与TensorBoard一起使用,通过Web服务或文件操作轻松加载和使用。

与之对比,Checkpoints采用了另一种保存机制,它主要用于模型训练过程中的持久化保存,允许在断电后恢复训练。这个机制尤其适用于长时间或分布式训练任务,能够有效管理大型模型的训练过程。

在实际应用中,SavedModel适用于模型的分享和部署,而Checkpoints则更适合模型训练时期的持久化管理。两者各有优势,可根据实际需求选择合适的保存和加载方式。这也是为什么在TensorFlow等深度学习框架中,既有SavedModel这样便于部署的模型文件,也有Checkpoints这样灵活持久化的机制。

转载地址:http://ixkzk.baihongyu.com/

你可能感兴趣的文章
MangoDB4.0版本的安装与配置
查看>>
Manjaro 24.1 “Xahea” 发布!具有 KDE Plasma 6.1.5、GNOME 46 和最新的内核增强功能
查看>>
mapping文件目录生成修改
查看>>
MapReduce程序依赖的jar包
查看>>
mariadb multi-source replication(mariadb多主复制)
查看>>
MaterialForm对tab页进行隐藏
查看>>
Member var and Static var.
查看>>
memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
查看>>
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
mxGraph改变图形大小重置overlay位置
查看>>
MongoDB学习笔记(8)--索引及优化索引
查看>>
MQTT工作笔记0009---订阅主题和订阅确认
查看>>
ms sql server 2008 sp2更新异常
查看>>